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1. This paper may be considered as a continuation of the papers of
Amel'kovic [1], Miihlbach [17J, and Lorentz and Schumaker [14] or, better,
as a reinterpretation and extension of the first two papers with respect to
the results obtained by Lorentz and Schumaker.

In the following two sections we formulate and prove a basic pointwise
saturation theorem for sequences of positive operators, while the remaining
sections are devoted to various applications.

The author gratefully acknowledges the interest and support of Professor
G. G. Lorentz in the preparation of this paper.

2. qa, b] denotes the space of all continuous real-valued functions
f(x) on the closed interval [a, b] of the real axis.

Let v, w be functions in qa, b], strictly positive on (a, b), and let

cp(x) = r v(t) dt,
a

if(x) = r w(t) dt
a

and

cP(x) = I: if(t)v(t) dt.

{I, cp, cP} is a complete Chebychev system on [a, b]; see Karlin and Studden
[10, Chap. XI].

For a function f in qa, b] we define the operation of differentiation
Df(x) at a point x E (a, b) by

_ . _ I j'(x) I

Df(x) - D",Drpf(x) . - w(x) [ v(x) ] ,

whenever the right-hand side is meaningful.
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Obviously, the pair of functions {I, ep} forms a complete system of
solutions of

Df(x) = 0 on (a, b),

while

D <P(x) = 1 on (a, b).

Let {Ln : n = 1,2,...} be a sequence of positive linear transformations
on C[a, b] into itself, let {An: n = 1, 2,...} be a sequence of positive numbers
tending to 00 as n --+ 00, and let p(x) be a function in C[a, b], strictly positive
on (a, b).

We say {Ln : n = 1, 2,...} satisfies a Voronovskaya condition if and only if

lim An{Ln(f; x) - f(x)} = p(x) Df(x),
n->OO

whenever Df(x) exists.
Trivially, for each x E (a, b),

xE(a,b), (1)

while

as n --+ 00. Moreover, by Korovkin's theorem [11, p. 46],

lim Ln(f; x) = f(x)
n->oo

pointwise for each x E (a, b).

(fE C[a, b])

THEOREM 1. Let {Ln : n = 1, 2,...} be a sequence of positive operators on
C[a, b] into itseljwhich satisfies condition (1). Let G be a function in C[a, b],
and let g be a finitely-valued Lebesgue-integrable function on (a, b) such that
for each x E (a, b)

lim inf An{Ln(G; x) - G(x)} ~ p(x) g(x) ~ lim sup An{Ln(G; x) - G(x)}. (2)
n~OO n~oo

Then there are two constants A and B such that

G(x) = A + Bep(x) + I: vet) dt (g(u) w(u) du (3)

on [a, b].

This is a pointwise saturation theorem for the sequence {Ln : n = 1,2,...}.
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It is a converse of Voronovskaya's condition (1). Indeed, if the function G
in qa, b] is given by (3), then for almost all x in (a, b)

lim An{LnCG; x) - G(x)} = p(x) g(x).
n->oo

(4)

Moreover, the theorem is best possible in the following sense: If condition
(2) is violated at even one point in (a, b) then the satement of Theorem 1 is
wrong. Indeed, setting

XoE (a, b),

and we have for all x E (a, b), x =1= X o'

lim An{Ln(fo ; x) - fo(x)} = 0,
n->OO

while at x = Xo

Remark. The theorem may be looked at as a generalization of the
following fundamental lemma of de la Vallee·Poussin in the theory of
trigonometric series:

Let G belong to qa, b], and let g be a finitely-valued, L-integrable function
on (a, b) such that for all x in (a, b)

[}2G(X) < g(x) < D2G(x).

Then

G(x) = A + Bx +rdtrg(u) du,
a a

where A and B are two constants.

a <x <b,

The expressions [}J(x) and DJ(x) are the lower and upper second
symmetric derivatives offat x, respectively.

Indeed, if we define

then we have

L (f' ) = I(x + t) + I(x - t)
t ,x 2 ' t > 0,

lim t-2{LtCf; x) - I(x)} = H"(x),
t->o+

whenever rex) exists.
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For this set of operators, Theorem 1 reduces to de 1a Vall6e-Poussin's
lemma. Moreover, the proof of Theorem 1 is basically a transformation of
the arguments in de la Vallee-Poussin's proof (cf. Hardy and Rogosinski
[9, p. 90]). The relationship of de la Vallee-Poussin's lemma with the
phenomenon of saturation was pointed out by Butzer in several papers; see,
in particular, [5].

As a consequence of Theorem 1 we obtain the so-called saturation theorem
for {Ln : n = 1,2,...}.

THEOREM 2. Let {Ln : n = 1,2,...} be a sequence of positive operators
on qa, b] into itself which satisfies condition (1), and let G belong to qa, b].
/ffor all x in (a, b)

An I Ln(G; x) - G(x)I ~ Mp(x) + 0.,(1) (5)

for some positive constant M, then D",G(x) exists, belongs to qa, b], and

ID",G(y) - D",G(x) \ ~ M I if;(y) - if;(x)I

for all x, y E [a, b], and vice versa.

(6)

Remark. In its given form Theorem 2 is due to Lorentz and Schumaker
[14], who even formulated and proved a more general version. A more
special version of Theorem 2 can be found in Amel'koviC's and Miihlbach's
papers. At this point it has to be mentioned that it was Amel'kovic who gave
the first analytic proof of Lorentz's saturation theorem for the Bernstein
polynomials (cf. Lorentz [13, p. 102ff.]). Lorentz's original proof is essentially
a functional-analytic one; his method has also been applied for proving
local saturation theorems for various sequences of positive operators, see
in particular Suzuki [19] and Suzuki and Watanabe [20].

In one of the following applications the weight functions v and w in
qa, b] are strictly negative on (a, b). Setting

ep(x) = - rvet) dt
'"

and if;(x) = - rwet) dt,
'"

the two theorems remain valid with (3) replaced by

G(x) = A + Bep(x) + s: v(t) dt f: g(u) w(u) duo (3')

3. For the proof of Theorem 1 we need three lemmas. But before we
can formulate these lemmas, we have to give the following definition:
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A functionfE qa, b] is said to be convex (concave) with respect to {I, <p} on
[a, b] if and only if

for all x, Xo , Xl E [a, b] where Xo :(; x :(; Xl . A function which is both convex
and concave with respect to (w.r.t.) {I, rp} is said to be linear w.r.t. {I, rp}
[10].

LEMMA 1. ThefunctionfEqa,b] is convex w.r.t. {I, <p} on [a,b] ifand
only if

on (a, b). (6)

Remark. A proof of this lemma can be found in the papers of Miihlbach
and Lorentz and Schumaker. For the Bernstein polynomials it goes back
to Bajsanski and Bojanic [2]. Actually, the method of proof of Lemma I has
its origin in the proof of de la Vallee-Poussin's lemma (cf. Hardy and
Rogosinski [9, p. 87]). In this connection we also have to mention the paper
[8] of DeVore who studies among others the saturation problem for
sequences of positive linear operators on q -I, I] into itself of so-called
optimal convergence by using these methods.

COROLLARY. Iffor afunctionfE qa, b]

for each x in (a, b), thenfis linear w.r.t. {I, <p} on [a, b].

This is the so-called pointwise "o"-theorem for the sequence
{Ln : n = I, 2,...}. It means that for anfE qa, b] the order of approximation
of f(x) by Ln(f; x) on (a, b) is at most of order O",(l/An) (n -+- (0) unless f(x)
is linear w.r.t. {I, <p}.

LEMMA 2. LetfE qa, b], and let F(x) = f:f(t) vet) dt. For each x E (a, b)

p(x)l}",f(x) <; lim An{Ln(F; x) - F(x)} <; p(x)15",f(x). (7)
n->CXl

Proof We have
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Thus it is enough to show that

BERENS

~ p(x)15</J(x). (7')

We shall only prove the right-hand side of this inequality. Introducing

I
y It (> ° Y oF xc[>(y) - c[>(x) - {cp(y) - cp(x)} !fi(x) = vet) dt w(u) du l= 0' ='
x x \, Y x,

we obtain

I
y

f(t) - f(x) vet) dt It w(u) du
F(y) - F(x) - {cp(y) - cp(x)}f(x) x !fi(t) - !fi(x) x

c[>(y) - c[>(x) - {cp(y) - cp(x)} !fi(x) - I: vet) dt ( w(u) du

from which it easily follows that

D f(x) ~ lim F(y) - F(x) - {cp(y) - cp(x)}f(x) ~ 15 f(x)
- '" "':;:;; c[>(y) - c[>(x) - {cp(y) - cp(x)} !fi(x) '" '" .

For 15",f(x) = + 00, there is nothing to prove.
Let 15",f(x) = d, finite. Given an E > 0, there is a 0 = o(x, E) > °such that

F(y) - F(x) - {cp(y) - cp(x)} f(x)

~ (d + E)(c[>(Y) - c[>(x) - {qJ(y) - cp(x)} !fi(x)),

whenever I y - x I < 0, and, consequently,

AnLn(F(') - F(x) - {cpO - cp(x)}f(x); x)

~ (d + E) AnLn(C[>O - c[>(x) - {cpO - cp(x)} !fi(X); x) + 0.,(1).

Hence

lim sup AnLn(FO - F(x) - {cpO - cp(x)} f(x); x) ~ p(x)(d + E)
n->OO

for every E > 0, which gives the desired result.
For 15",f(x) = - 00, one obtains similarly

lim sup AnLn(FO - F(x) - {cpO - cp(x)} f(x); x} ~ p(x)K
n->oo

for any real number K.
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The final lemma is a well-known result from the theory of the Lebesgue
integral due to de la Vall6e-Poussin (cf. Hardy and Rogosinski [9, p. 90]).

LEMMA 3. Let g E L(a, b). Then there are sequences {Pm: m = 1,2,...}
and {Pm: m = 1, 2, ...} offunctions in C[a, b] such that

(i) pia) = Pmea) = 0;
(ii) Pm(x), Pm(x) -- J: g(u) w(u) du uniformly on [a, b];

(iii) 15,pPm(x) ~ g(x) ~ l),pPm(x) in (a, b), whenever g(x) is finite.

Proof of Theorem 1. Let

j(x) = rget) w(t) dt
a

and F(x) = rjet) vet) dt,
a

and let {Pm: m = 1,2,...} and {Pm: m = 1,2,...} be the sequences of
functions associated to g via Lemma 3. We set

qm(x) = rPm(t) vet) dt
a

Finally we define

and Qm(x) = rPmet) vet) dt.
a

K(x) = F(x) - G(x); Km(x) = Qm(x) - G(x); km(x) = qm(x) - G(x).

The theorem is proved if we can show that K(x) is linear w.r.t. {I, <p}
on [a, b].

For each fixed x in (a, b), we obtain by Lemmas 2 and 3

lim sup An{Ln(Km ; x) - Km(x)}
n-'>oo

~ lim inf An{Ln(Qm ; x) - Qm(x)} - lim inf An{Ln(G; x) - G(x)}
n~oo n~oo

~ p(x){l)</JPm(x) - g(x)} ~ O.

By Lemma 1, Km(x) is convex w.r.t. {I, <p} on [a, b] for each m. Likewise
one proves that km is concave w.r.t. {I, <p} on [a, b] for each m. Taking
into account that both Km(x) and km(x) converge to K(x) uniformly on
[a, b] as m -- 00, and we have that K(x) is linear w.r.t. {I, <p} on [a, b].
This proves the theorem.

Proof of Theorem 2. We define the function g in Theorem 1 by

p(x) g(x) = lim inf An{Ln(G; x) - G(x)}
n-'>oo

on (a, b).

By Theorem 1, G(x) is then given via (3) with Ig(x) I ~ M on (a, b), which
proves the "if" part.
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To prove the "only if" part, remember that

An{Ln(G; x) - G(X)}

= AnLn(G(·) - G(x) - {<pO - <p(x)} D",G(x); x) + 0(1,(1)

and that

I G(y) - G(x) - {<p(y) - !p(x)} D<pG(x) I

= I£: {D,P(t) - DcpG(x)} vet) dt I

~ M{<P(y) - <P(x) - {<p(y) - !p(x)} l/J(x)}

giving

An I Ln(G; x) - G(x) I ~ p(x)M + oil) (n -+ (0).

4. As the first application we study the Bernstein polynomials

BnCf; x) = k~of( ~ HZ) xk(l - x)n-k (n = 1, 2,..·;fE qo, 1]).

For these polynomials Voronovskaya proved [12, p. 22] that

x(l - x)
~i~ n{Bn(f; x) - f(x)} = 2 r(x) (0 < x < 1)

whenever r(x) exists.
In this case, vex) = w(x) = 1, p(x) = x(l - x)j2 on [0, 1], and

{An = n : n = 1, 2,...}. Theorem 1 then reads:

Let f belong to qo, 1], and let g be a finitely-valued, L-integrable function
on some subinterval (a, b) in [0, 1] such that for all x E (a, b)

lit,e.~nf n{Bn(f; x) - f(x)} ~ x(l ~ x) g(x) ~ lit,e.~up n{BnCf; x) - f(x)}.

Then

f(x) = A + Bx +rdt rg(u)du on [a, b],
a a

where A and B are two suitable constants.

For the associated saturation theorem, see Lorentz [13, p. 102].
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For the Bernstein power series

00 ( k )(n + k - 1)Pn(f; x) = (1 - x)n k~of n + k k xk (n=1,2, ... ;fE CB[O, 1»

(CB[O, 1) is the space of all bounded continuous functions on [0, 1»,
introduced by Meyer-Konig and Zeller [16], the following Voronovskaya
condition is known: Setting rp(x) = xl(1 - x),

y~ n{Pn(f; x) - f(x)} = rp(x)[1 i rp(x)] D,N(x), 0< x < 1,

whenever DC/H(x) exists.
Here we have vex) = w(x) = 1/(1 - X)2, p(x) = rp(x)[l + rp(x)]/2, and

{An = n : n = 1,2,...}. We only want to formulate the local saturation
theorem:

(a) Iffor anfE CB[O, 1]

lim inf n{Pn(f; x) - f(x)} = °
/1->00

on some subinterval (a, b) in [0, 1) with b < 1, thenf(x) is linear w.r.t. {I, rp}.

(b) Let fE CB[O, 1). If there exists a positive constant M such that for
all x E (a, b) C [0, 1), b < 1,

x M
n IPif; x) - f(x) I ~ (1 _ X)2 2 + 0., (1) (n = 1,2,...)

holds true, then f' E qa, b] andfor any pair x, y E [a, b]

I (1 - y)2 f'(y) - (1 - X)2 f'(x) I ~ (1 _ y~l _ x) I y - x I,

and vice versa.

The Bernstein power series have been generalized by Cheney and Sharma
[7]. For the saturation theorem for these generalized Bernstein power
series, see Lorentz and Schumaker [14].

As a third application we investigate the following sequence
{Mn : n = 1, 2,...} of operators on CB[O, (0) into itself constructed by
Baskakov [3]: Let {rpn : n = 1, 2, ...} be a sequence of completely monotonic
functions on [0, 00) such that (i) rpn(O) = 1 and (ii) - rp~k)(X) = nrp~T<;.,l)(x),

k = 1,2,... and c a positive integer. The sequence {Mn : n = 1,2,...} is
then defined by

00 k (_l)krp~k)(x) x
kMn(f; x) = L f(n) k!

k=O
(n = 1, 2,... ;fE CB[O, 00»,
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and it satisfies the following Voronovskaya condition:

lim inf n{Mn(f; x) - I(x)} = x(l ~ ex) rex),
n->oo

whenever rex) exists.
Here vex) = w(x) = I, p(x) = x(l + ex)j2 and {An = n : n = 1,2,...}.
Examples are ffJn(x) = e-n", with e = 0 and ffJn(x) = (I + x)-n with

e = l, which lead to the Szasz operators

00 (k) (nx)k
Sn(f; x) = e-n", L f - -,-

k~O n k.

and via the transformation x --+ yj(l - y) to the Bernstein power series of
Meyer-Konig and Zeller [16], respectively.

The local saturation theorem for the Baskakov operators{Mn : n = 1,2,...}
is due to Suzuki [19].

5. As the final two applications we discuss the Gauss-Weierstrass
operators {Wt : t > O} on CB(- 00, (0) and the Gamma operators
{Gn : n = I, 2,...} on CB(O, (0).

For anf E CB( - 00, (0), Wt(w; x) is defined by

1 00

WtCf; x) = . /--J f(x - u) exp (-u2j4t) duo
v 47Tt -00

It is known [4], that

lim Wt(f; x) - I(x) = rex)
t->o+ t '

whenever rex) exists.
We formulate the local saturation theorem:

(a) Iffor anfin CB(-oo, (0)

l· . f Wt(f; x) - I(x) 0
1m III =
t~o+ t

on some finite interval (a, b), thenf(x) is linear on [a, b].

(b) For an f E CB(- 00, (0), the following are equivalent:

(i) I Wt(f; x) - I(x) I ~ Mt + 0",(1) on (a, b),
(ii) !'(x) exists on [a, b] and!, E LipM(l; qa, b]).

For a discussion of the approximation behavior of the Gauss-Weierstrass
operator see the monograph of Butzer and Nessel [6].
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The Gamma operators on CB(O, 00) are defined by

foo (X) du
Gn(f; x) = 0 f(nu) gn Ii Ii'

where gn(u) = unru/(n - I)!. They were introduced by Feller, their
approximation behavior was intensively studied by Muller [18] and Lupas
and Muller [15].

Setting ep(x) = l/x, and it is easy to verify that

ti~ n{Gn(f; x) - f(x)} = ep2ix) D<p2f(x),

whenever Dcp2f(x) exists.
Here, vex) = w(x) = -1/x2, p(x) = 1/2x2 and {An = n : n = 1,2,...}.

We have

(a) Let f E CB(O, (0), and let g be a finitely-valued, L-integrable function
on some subinterval (a, b) of(O, (0) with a> 0. Iffor all x E (a, b)

li~J£lfn{Gn(f; x) - f(x)} ~ 2~2 g(x) ~ li~-,>s~p n{Gn(f; x) - f(x)},

then

B fb dt fb du
I(x) = A + x + f2 g(u) u2

'" t

on [a, b]

for some constants A and B.

(b) Let f E CB(- 00, (0). If there exists a positive constant M such that

M
I Gn(f; x) - f(x) I ~ 2x2 + 0.,(1)

on some subinterval (a, b) C (0, (0) with a > 0, thenf'(x) exists on [a, b] and

M
1 y2j'(y) - x 2j'(x) 1 ~ - 1 y - x I,

xy

and vice versa.
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